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ABSTRACT

Tuberculosis (TB) remains a critical global health challenge, particularly in resource-constrained 
settings where timely and accurate diagnosis is essential for effective disease management and 
control. Traditional diagnostic methods, such as Ziehl-Neelsen (ZN)-stained sputum microscopy, 
are widely employed for detecting Mycobacterium tuberculosis; however, these techniques are 
inherently subjective and prone to variability due to their reliance on manual interpretation. In 
response, an increasing body of research has applied deep learning (DL)-based approaches to 
automate TB detection from microscopy images. This systematic review synthesizes findings from 
67 studies that have explored various machine-learning techniques for TB diagnosis using ZN-
stained images. A structured literature search was conducted across multiple scientific databases, 
including PubMed, IEEE Xplore, Scopus, and ScienceDirect. Studies were selected based on their 
focus on DL applications for TB detection using ZN-stained images. The reviewed methodologies 
encompass various stages, including image preprocessing, feature extraction, classification strategies, 

and performance evaluation metrics. Our review 
reveals that DL models, particularly those 
employing automated feature extraction and 
classification, are predominantly used, with some 
studies reporting accuracies of up to 100%. This 
review provides a comprehensive overview of 
state-of-the-art methodologies, including image 
preprocessing, feature extraction, classification 
strategies,  and performance evaluation 
metrics. Notably, the evidence indicates that 
convolutional neural network (CNN)-based 
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approaches offer the highest promise due to their robust ability to detect subtle features in stained 
images. Consequently, future research will focus on developing and optimizing CNN-based models 
to further enhance TB detection, ultimately improving diagnostic outcomes and supporting more 
effective TB control strategies.

Keywords: Convolutional neural network, hybrid machine learning, medical image processing, tuberculosis 
detection, Ziehl-Neelsen staining

INTRODUCTION 

TB remains a significant global health challenge, caused by Mycobacterium tuberculosis, 
which usually affects the lungs but can spread to other organs. According to the World 
Health Organization (WHO), in 2024, Malaysia reported an incidence of 74 new and relapse 
TB cases per 100,000 population and 3,140 TB-related deaths. These figures underscore 
the significant public health challenge posed by TB in the country (WHO, 2024). TB is 
an airborne infectious illness transmitted when people with active pulmonary TB cough, 
sneeze, talk, sing, or laugh. It mostly affects the lungs, but it may also impact the spine, 
brain, and kidneys. Although TB transmission requires prolonged and close contact, its 
latent form (latent tuberculosis infection or LTBI) allows the bacteria to persist within 
the host for years without causing symptoms, only becoming active when the immune 
system is compromised (Tobin & Tristram, 2024). However, comprehensive data on 
LTBI prevalence in Malaysia remains limited. A study by MacLean et al. (2020) using 
the tuberculin skin test (TST) reported an LTBI prevalence of 68.20% among inmates in 
Malaysian prisons, indicating significant latent transmission reservoirs. The high burden of 
TB and LTBI necessitates advancements in diagnostic approaches to ensure timely detection 
and treatment, particularly in resource-limited settings where conventional methods face 
significant challenges. Many individuals with active TB may not immediately realize they 
are infected, as the disease can sometimes develop slowly over weeks or even months 
without showing noticeable symptoms (Suliman et al., 2019). When symptoms do appear, 
they often resemble those of common illnesses such as the flu and may include fever, weight 
loss, persistent cough, and fatigue. Since TB can take up to six weeks to manifest, delayed 
detection contributes to continued transmission (Nor et al., 2021). Figure 1 illustrates that 
an individual with active TB can unknowingly transmit the bacteria to a healthy person, 
underscoring the urgency for improved early detection methods (Cambier et al., 2014). 

TB diagnosis traditionally involves multiple laboratory techniques, including chest 
radiography, computed tomography (CT) scans, and microbiological assessments of sputum 
samples. Among these, Ziehl-Neelsen ZN staining for sputum smear microscopy remains 
one of the most widely used diagnostic techniques in resource-limited settings, as it enables 
direct visualization of acid-fast bacilli (AFB) under a microscope (Ghosh et al., 2022; Surani 
et al., 2021). Figure 2 displays an image of TB detected using ZN-stained microscopy. 
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The image shown below is also displayed. 
ZN staining is a special bacteriological stain 
used to identify AFB, which retains the red 
carbol fuchsin stain even after being washed 
with acid alcohol. This image is a sample 
from the Faculty of Medicine laboratory for 
TB analysis at Universiti Teknologi MARA, 
Shah Alam. The characteristic appearance 
of TB bacilli under ZN staining includes 
curved, rod-shaped bacteria, often wrapped 
together in cord-like formations. While this 

Figure 1. Development of tuberculosis illustration (Cambier et al., 2014)

Figure 2. Tuberculosis was detected using Ziehl-
Neelsen-stained microscopy under 40× magnification
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staining method provides a direct way to detect TB, it is highly time-consuming since 
researchers or pathologists must manually examine microscopic fields to locate the tiny 
bacilli. Given that TB bacteria measure approximately 1-2 micrometers, detecting them 
requires magnification of at least 40×, making the process labor-intensive and prone to 
human error. These challenges highlight the urgent need for advanced technologies, like 
machine learning (ML), to enhance TB diagnosis efficiency and reduce diagnostic errors 
associated with manual interpretation.

The application of artificial intelligence (AI) and ML in TB detection has shown 
considerable potential in improving accuracy, efficiency, and automation (Hooda et al., 
2017; Lakhani & Sundaram, 2017). CNNs, a class of DL models specialized in image 
processing, have demonstrated remarkable performance in medical image classification. 
Studies have validated CNN-based approaches for TB detection using chest X-rays, 
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achieving high diagnostic accuracy and significantly reducing the time required for analysis 
(Mujeeb Rahman et al., 2025; Nafisah & Muhammad, 2024). Sarawagi et al. (2024) further 
reinforced these findings, demonstrating the potential of CNN architectures in streamlining 
TB detection workflows in clinical settings. However, while CNN models have been widely 
applied to radiographic images, their application to ZN-stained sputum smear microscopy 
images remains underexplored. ZN-stained images present unique challenges such as non-
uniform staining, overlapping bacilli, and background noise, necessitating specialized ML 
techniques tailored for effective feature extraction and classification. 

Traditional TB diagnostic methods, such as ZN-stained microscopy, are prone to 
human error, time-consuming, and suffer from variability in technician expertise, which 
can impact the accuracy and reliability of diagnoses. While CNNs have been extensively 
applied to various medical imaging tasks, their specific application to TB detection using 
ZN-stained tissue sample microscopy images remains underexplored. Moreover, most 
ML approaches in TB detection lack emphasis on optimizing pre-trained CNN models, 
such as VGG16, to effectively address the unique challenges associated with ZN-stained 
microscopy images, including variations in stain intensity and noise artifacts. This review 
aims to bridge this gap by systematically analyzing and evaluating ML techniques tailored 
for ZN-stained TB microscopy images, with a focus on pre-trained CNN models and their 
optimization strategies.

To address these challenges, ML offers a transformative approach for TB diagnosis 
by automating and standardizing image-based detection. DL models, particularly CNNs, 
can analyze microscopy images with high precision, reducing the subjectivity associated 
with manual analysis. Automated image analysis significantly reduces diagnosis time, 
enabling rapid screening and early intervention. Additionally, ML models eliminate intra- 
and inter-observer variability, ensuring consistent and reproducible diagnostic outcomes. 
AI-driven diagnostic frameworks can be integrated into digital pathology systems, enabling 
remote diagnostics and supporting telemedicine initiatives in resource-constrained regions. 
Furthermore, this review provides a comparative analysis of existing ML-based approaches 
for TB detection in ZN-stained images, highlights their strengths and weaknesses, and 
discusses potential improvements in model training, feature selection, and generalization 
performance. By systematically evaluating existing ML approaches and their applicability 
to microscopy-based TB diagnosis, this study aims to bridge the gap between traditional 
diagnostic techniques and modern computational advancements, ultimately contributing 
to improved TB detection and disease management.

Traditional TB Diagnosis Approaches

TB remains a daunting worldwide health concern, despite substantial breakthroughs 
in diagnostic technologies. From a clinical perspective, TB illness is evaluated using a 
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complete medical assessment that includes a detailed medical history, physical examination, 
and several types of diagnostic testing (Centers for Disease Control and Prevention [CDC], 
2025). These tests typically include tuberculin skin tests (TST) or TB blood tests (interferon-
gamma release assays), chest radiography, and laboratory evaluations such as sputum smear 
microscopy, mycobacterial culture, and molecular tests for drug resistance (Pai et al., 2016). 
Nevertheless, a definitive diagnosis is based on laboratory procedures that directly detect 
the presence of tuberculosis germs, most notably sputum smear microscopy and culture. 
While mycobacterial culture is regarded as the gold standard because of its great sensitivity, 
it needs an incubation time of up to eight weeks, delaying treatment action (Liang et al., 
2022; McClean et al., 2024). Polymerase chain reaction (PCR)-based technologies, such 
as the GeneXpert MTB/RIF test, provide quick detection and simultaneous drug resistance 
profiling, but they are restricted by cost and resource restrictions in many endemic areas 
(Horne et al., 2019).

ZN staining remains an important component of this diagnostic system, especially in 
resource-limited situations. ZN-stained sputum smear microscopy is commonly used to 
identify acid-fast bacilli (AFB) associated with Mycobacterium TB (Bhandari R, 2021; 
Masali et al., 2021). The ZN staining method involves several key steps. First, carbol 
fuchsin is applied to the sputum smear, which penetrates the lipid-rich cell walls of the 
Mycobacterium tuberculosis (TB) bacteria, staining them red. Following this, an acid-
alcohol solution is used to decolorize the smear. This step removes the stain from non-
acid-fast organisms, leaving only the TB bacteria-stained red. Finally, methylene blue is 
applied as a counterstain, providing a blue background that contrasts with the red-stained 
TB bacteria, enhancing their visibility. This causes TB bacteria to appear as brilliant 
red rods under a light microscope (Bayot et al., 2023; Dzodanu et al., 2019). Figure 3 
illustrates the ZN-stained process (LaboratoryInfo, 2022), which is a successful approach 
that is strongly reliant on the knowledge of the microscopist, resulting in possible inter-
observer variability and reduced sensitivity in cases with low bacterial load (Behr et al., 
2022; Zaporojan et al., 2024). 

Manual examination of ZN-stained smears has been the cornerstone of TB diagnosis 
in many regions due to its cost-effectiveness and simplicity. However, its accuracy is often 
compromised by subjective interpretation and inter-observer variability (Perez-Siguas et 
al., 2023). Despite these limitations, ZN-stained smear microscopy remains critical in high-
burden settings that lack advanced diagnostic technologies (Tummalapalli et al., 2024). 
Automated image analysis systems have been developed to overcome these challenges. 
These systems employ ML and computer vision techniques to analyze digital images of 
ZN-stained smears, reducing diagnostic variability, expediting the screening process, and 
maintaining high sensitivity and specificity (Bhaskar et al., 2023). Additionally, automation 
facilitates digital archiving and remote consultation, which are valuable for large-scale 
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TB control programs (Shwetha et al., 2021). Although mycobacterial culture and PCR-
based assays like ARIMA offer higher sensitivity and rapid drug resistance detection, their 
high costs and infrastructure requirements limit their widespread use in many endemic 
areas (Campelo et al., 2021; Li et al., 2022). Therefore, ZN-stained smear microscopy, 
particularly when enhanced with automated analysis, remains the frontline diagnostic tool 
for TB screening due to its affordability and rapid turnaround. While previous reviews have 
broadly examined ML applications in TB detection, most have focused on radiographic 
images such as chest X-rays or molecular diagnostic methods. However, the application of 
ML to ZN-stained sputum smear microscopy images remains underexplored. Thus, future 
research should focus on further integrating automated image analysis with conventional 
diagnostic workflows to optimize TB control strategies globally.

ML for TB Detection

TB remains a persistent global health challenge, prompting the exploration of innovative 
diagnostic strategies that extend beyond conventional methods. Traditional techniques 
such as sputum smear microscopy, mycobacterial culture, and PCR-based assays have 
been instrumental in TB diagnosis. However, these methods often suffer from limitations. 
Manual smear microscopy is hindered by subjectivity and inter-observer variability, culture 
methods are time-consuming, and molecular techniques, though rapid, are expensive 
and require sophisticated infrastructure (Afsar et al., 2018; Iqbal et al., 2023). In recent 
years, ML has emerged as a promising tool for improving TB diagnosis. DL techniques, 
particularly CNN, have revolutionized medical image analysis by automatically learning 
hierarchical features from complex data. Early research demonstrated the potential of 
CNN in detecting TB from chest radiographs, with diagnostic accuracies exceeding 90% 

Figure 3. Ziehl-Neelsen-stained process (LaboratoryInfo, 2022)
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(Rajaraman et al., 2022). These encouraging results have spurred further investigation 
into the use of ML to analyze both radiographic images and ZN-stained sputum smears. 
However, while most prior reviews primarily focus on ML applications in chest X-ray 
analysis, limited studies have systematically explored its use in ZN-stained microscopy 
images, a gap that this review aims to address.

Subsequent studies have expanded on these findings, developed efficient deep network 
architectures for ZN-stained microscopy images, reporting sensitivities and specificities 
in the range of 90–95% (Tamura et al., 2024; Witarto et al., 2024). Saini et al. (2023) 
further refined the approach by integrating segmentation and visualization techniques 
into CNN frameworks, achieving robust detection accuracies near 93% across varied 
datasets. These studies illustrate that automated analysis not only improves diagnostic 
speed but also minimizes human error by providing consistent, objective assessments. 
Moreover, hybrid approaches combining CNN-based feature extraction with traditional 
classifiers, such as support vector machines (SVMs) or random forests, have been explored 
to optimize decision boundaries and further enhance diagnostic performance (Hansun et 
al., 2023). These methods have shown promise, with several studies reporting accuracies 
comparable to or even surpassing standalone DL models. Despite these advances, challenges 
remain. The availability of large, well-annotated datasets is critical for training DL models 
effectively, and generalizability across diverse populations and imaging conditions is still 
under investigation (Ahmed et al., 2023). Furthermore, variations in ZN-stained smear 
characteristics, including stain intensity and background noise, remain a significant 
hurdle that previous reviews have not extensively analyzed. Addressing these challenges, 
this study provides a comparative analysis of different CNN architectures, particularly 
pretrained models like VGG16, and evaluates their suitability for TB detection in ZN-
stained microscopy images. Additionally, the review explores optimization strategies for 
feature extraction and classification, bridging the gap between traditional and AI-driven 
diagnostic approaches.

Nevertheless, the integration of ML into TB diagnostics represents a significant step 
forward, with potential applications ranging from automated screening in resource-limited 
settings to digital archiving and remote consultation for large-scale TB control programs. 
In summary, the application of machine learning, especially CNNs, has the potential to 
revolutionize TB detection by offering rapid, accurate, and consistent diagnoses. As ongoing 
research continues to refine these models and address existing challenges, ML-based 
approaches are poised to become an integral component of global TB control strategies. 
This review aims to provide a more targeted analysis of ML applications for ZN-stained 
images, offering insights into dataset standardization, model generalization, and the real-
world feasibility of AI-assisted diagnostics, thereby setting it apart from earlier studies 
that have focused mainly on radiographic imaging.
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Innovations in Medical Diagnostics in Malaysia

The exploration of DL applications in Malaysia has expanded across various fields, 
particularly in medical diagnostics, agriculture, and engineering, highlighting the growing 
impact of AI on improving operational efficiency and accuracy. Studies such as Hosain 
et al. (2024) emphasize the parallels between structured learning approaches and DL 
model development, particularly in enhancing diagnostic outcomes within the Malaysian 
healthcare system. Awang et al. (2019) delve into the clinical determinants of severe 
pulmonary tuberculosis, reinforcing the need for advanced techniques such as CNNs to 
automate chest radiograph interpretation and improve TB diagnosis. Similarly, Toba et al. 
(2020) demonstrate that DL models can outperform experienced clinicians in diagnosing 
congenital heart disease from radiographic images, highlighting the potential of these 
technologies in improving diagnostic accuracy across various medical conditions in 
Malaysia. However, most DL studies in Malaysia focus on radiographic imaging (X-rays, 
CT scans, and magnetic resonance imaging [MRI]), such as Kotei and Thirunavukarasu 
(2024), while few have addressed the complexity of ZN-stained sputum smear microscopy. 
Given the unique challenges posed by these images, such as variations in staining intensity 
and the presence of artifacts, specialized CNN architectures are required to optimize 
detection performance.

Beyond the healthcare sector, Lu et al. (2020) explore the efficacy of DL methods like 
LSTMs combined with fully convolutional networks (FCNs) in brain signal processing, 
underscoring their applicability to other domains, such as neurotechnology and healthcare 
in Malaysia. Carvalho et al. (2023) further contribute to this narrative by demonstrating 
how DL models can enhance feature classification accuracy, which could be applied to 
school health services, ensuring better health outcomes for children in Malaysia. However, 
unlike large-scale chest radiograph datasets, annotated ZN-stained smear microscopy 
datasets are scarce in Malaysia. This necessitates innovative approaches such as transfer 
learning, data augmentation, or synthetic dataset generation to improve model robustness 
and generalizability across diverse clinical settings.

In medical imaging, Alaskar et al. (2019) show how DL models, such as Alex Net and 
Google Net, can effectively detect ulcers in wireless capsule endoscopy (WCE) images, 
offering valuable insights for broader healthcare applications, including TB diagnostics. Xie 
et al. (2020) present a novel approach using a fully CNNs to detect pulmonary tuberculosis 
lesions, achieving impressive diagnostic metrics, which are crucial for improving early 
TB detection in Malaysia. The use of ensemble DL models for TB detection, as discussed 
by Hwa et al. (2019). It also highlights the importance of leveraging innovative semi-
automated methods to differentiate between clinically pulmonary TB and lung cancer, 
thus contributing to the effective management of TB in high-prevalence regions. However, 
while CNNs have demonstrated effectiveness in various Malaysian healthcare applications, 
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their direct applicability to TB detection in ZN-stained images remains underexplored. 
Optimizing pre-trained models such as VGG16 specifically for smear microscopy is crucial 
to improving sensitivity and specificity in this context.

Finally, Tiwari et al. (2023) extend the application of DL techniques into engineering, 
specifically in fault diagnosis, emphasizing model robustness through dropout techniques, 
which is essential for improving diagnostic accuracy across diverse sectors in Malaysia. 
Collectively, these studies highlight the transformative potential of DL in Malaysia, 
particularly in enhancing diagnostic accuracy, operational efficiency, and disease 
management in healthcare, while also contributing to advancements in other critical fields, 
such as agriculture and engineering. Moreover, AI adoption in Malaysia is still evolving, 
with regulatory and infrastructural challenges. Discussing how automated TB detection 
could be integrated into Malaysia’s public health policies or screening programs (e.g., 
leveraging mobile diagnostics for rural areas) enhances the practical relevance of AI-
driven approaches. These findings highlight the role of DL technologies in addressing the 
unique challenges faced by Malaysia, positioning AI as a key tool in enhancing diagnostic 
performance and public health outcomes.

METHODOLOGY

The analysis includes studies on tuberculosis and machine learning, with a focus on “ZN-
stained”. The queries returned to several journal and conference publications. This survey 
solely considers peer-reviewed literature for systematic reviews. Table 1 shows the search 
engines used, which included Google Scholar, Elsevier, and Springer. The number of 
search results indicates the number of articles retrieved by search engines for the specified 
keywords. The number of relevant articles denotes the number of items that passed the 
initial screening procedure and were judged possibly relevant for a thorough assessment. 
The bibliographic part of the papers was also examined. The method was iterated until no 
further items were located. 

Table 1 
Summary of search results and retrieved relevant 
articles

Database engines Number of 
searches

Number 
of relevant 

articles
Elsevier 1,006 20
Springer 217 10
Pubmed 240 26
IEEE Xplore 100 6
MDPI 200 4t
Taylor & Francis 800 10

Prospective research articles are 
identified, screened, and chosen based on 
their eligibility. The Preferred Reporting 
Items for Systematic Reviews and Meta-
Analyses (PRISMA) model, depicted in 
Figure 4, outlines the overall publications 
reviewed in the research. It shows a step-by-
step flow chart for the detection technique. 
Papers that were unrelated to ZN-stained 
(100 articles) were not considered. After 
examining 156 publications, 39 were 
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discarded based on title and abstract analysis. The preprint version and duplicate 
publications were also eliminated. After assessing the quality of published research, 102 
papers were selected, with 150 discarded for not being research articles or relevant concepts. 
As a result, 60 papers were chosen for a detailed assessment.

Tuberculosis Detection and Prediction Framework

A detailed methodology for tuberculosis detection and prediction using a hybrid ML 
approach is presented in a framework. Figure 5 shows that the framework is structured 
into four essential phases. In Phase 1, data collection and initial processing occur, during 
which images of acid-fast bacilli are obtained from the clinical laboratory at Hospital 
Puncak Alam. Phase 2, referred to as data development, involves refining and transforming 
the raw dataset. This stage focuses on constructing a well-organized dataset suitable for 
both training and validating predictive models by applying preprocessing techniques, 
such as normalization, feature engineering, and data augmentation, to optimize model 
performance. Phase 3 represents the core of the framework, where the prediction model 
is trained and subsequently validated. Here, a CNN utilizing the VGG16 architecture is 
employed. CNNs are particularly adept for this task due to their ability to discern subtle 
color differences in images, which is a crucial factor, given that the ZN staining method 
exploits the unique properties of the bacterial cell wall, rich in mycolic acid, rendering it 
resistant to decolorization by acid-alcohol. This staining technique is critical for diagnosing 

Figure 4. PRISMA model for the depiction of inclusion and exclusion of records
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TB in clinical samples like sputum smears or tissue sections. Finally, the CNN model 
leverages the meticulously curated and preprocessed dataset from Phase 2 to perform 
accurate TB detection and prediction.

RESULTS AND DISCUSSION

Data Collection

The data for this study were obtained from the Clinical Diagnostic Laboratories (CDL) 
at Hospital UiTM Puncak Alam. ZN staining is a widely used technique in microbiology 
and pathology for detecting acid-fast bacilli, particularly Mycobacterium tuberculosis. This 
method capitalizes on the high mycolic acid content in bacterial cell walls, rendering them 

Figure 5. The framework for modelling the tuberculosis detection and prediction on Ziehl-Neelsen-stained 
slides using hybrid machine learning
Note. CNN = Convolutional neural network; TB = Tuberculosis; ZN = Ziehl-Neelsen
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Figure 6. One of the Ziehl-Neelsen-stained microscopy 
images under 80× magnification using NDP.view2 
software

resistant to acid-alcohol decolorization. 
Despite  i ts  diagnost ic  importance, 
analyzing ZN-stained samples remains a 
labor-intensive process, requiring skilled 
professionals for accurate interpretation. 
Figure 6 presents a sample of the dataset 
used in this study. However, one of the 
main challenges in working with ZN-stained 
images is their inherent variability due 
to differences in staining intensity, image 
contrast, and sample preparation techniques. 
Addressing these inconsistencies is crucial 
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for improving the robustness of automated TB detection models. Since the bacilli are 
extremely small, measuring approximately 1 µm in size, a magnification of 40× or higher 
was required to visualize them. As a result, a single glass slide could contain thousands 
of images, with the bacilli appearing as red-colored rods. However, capturing and saving 
these images was a time-consuming process, requiring meticulous effort to ensure proper 
documentation and storage.

Comparison of Detecting TB Using ML 

Recent advancements in ML have paved the way for automating TB detection, significantly 
reducing the burden on healthcare professionals. CNNs have demonstrated exceptional 
performance in medical image analysis by autonomously learning hierarchical features 
from complex datasets. Initial studies on chest radiographs reported diagnostic accuracies 
exceeding 90%, motivating further exploration of ML techniques for TB detection (Lakhani 
& Sundaram, 2017). 

Table 2 summarizes various ML models applied to TB detection. While many studies 
focus on chest X-rays due to their rapid image acquisition and accessibility, relatively few 
have explored the application of ML on ZN-stained images. The comparative analysis 
reveals that most studies have leveraged CNN-based models, such as VGG16, ResNet, 
and EfficientNet, achieving high accuracy levels. However, a key limitation is that ZN-
stained sample analysis requires extensive manual effort, limiting its widespread adoption 
in automated diagnostic workflows. Despite this, automating ZN-stained smear analysis 
could provide substantial benefits, particularly in resource-limited settings where access 
to advanced imaging modalities is constrained.

Among the different ML architectures applied to TB detection, CNN-based models, 
particularly VGG16, have consistently demonstrated superior performance. The high 
accuracy of CNNs can be attributed to their ability to automatically extract and learn 
hierarchical features from image data, reducing reliance on manual feature engineering. 
However, deeper models such as ResNet and EfficientNet, while offering better feature 
extraction, tend to require more computational power, making them less suitable for 
real-time clinical deployment in resource-limited settings. Additionally, studies reporting 
exceptionally high accuracy (up to 100%) raise concerns about potential overfitting, 
particularly if models have been trained on small datasets without proper validation. Future 
work should ensure rigorous evaluation using large-scale, diverse datasets and external 
validation cohorts to confirm the generalizability of these models.

Challenges in ZN-Stained Image Processing

ZN-stained images present unique challenges for automated analysis compared to chest 
X-rays. Variability in staining intensity, contrast, and background noise can impact model 
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performance, leading to false positives or negatives (Shah et al., 2017). Traditional image 
preprocessing techniques such as contrast enhancement, histogram equalization, and 
denoising can mitigate these challenges to some extent. However, DL-based preprocessing 
methods, such as generative adversarial networks (GANs) for image enhancement or self-
supervised learning for feature extraction, could provide more robust solutions. Another 
major limitation is the presence of overlapping bacilli in ZN-stained smears, which can 
confuse segmentation algorithms. Advanced segmentation models, such as U-Net and 
Mask R-CNN, can be integrated into ML pipelines to enhance bacillus localization and 
classification accuracy.

Clinical Integration and Real-World Applications

Although CNN-based models have demonstrated high accuracy, their integration 
into clinical workflows remains a challenge. One major barrier is the lack of model 
interpretability; clinicians need to understand why a model made a certain prediction. 
Explainability techniques such as gradient-weighted class activation mapping (Grad-
CAM) and SHapley Additive exPlanations (SHAP) could enhance trust in AI-assisted 
TB diagnosis by visualizing which image regions contributed to the model’s decision 
(Narkhede, 2024). Additionally, regulatory considerations and ethical concerns must be 
addressed before deploying AI-based TB detection in real-world settings. Ensuring fairness 
and avoiding biases in AI models is crucial, especially when datasets are skewed towards 
specific populations or biased by certain staining methods. Implementing human-in-the-
loop AI systems, where models assist rather than replace clinicians, could strike a balance 
between automation and medical expertise.

While CNNs have dominated TB detection research, alternative approaches could 
further enhance performance. Hybrid models that combine CNNs with traditional ML 
classifiers, such as SVMs or random forests, have shown promise in improving diagnostic 
accuracy (Narkhede, 2024). Moreover, transformer-based architectures, such as vision 
transformers (ViTs), could offer superior feature representation for medical image analysis, 
though their effectiveness on ZN-stained images remains largely unexplored. Self-
supervised learning, where models learn representations from unlabeled data, could also 
be beneficial, especially given the limited availability of annotated ZN-stained datasets. 
This approach has the potential to reduce dependency on large, labeled datasets while 
improving model robustness.

Review of TB Detection on ZN-Stained Using ML

The review of TB detection using ZN-stained microscopy images through ML is 
comprehensively summarized in Table 3. This review specifically focuses on research 
studies that have utilized ZN-stained smear images as the primary data source for TB 
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detection, in contrast to the more extensively studied chest X-ray (CXR) images. While 
CXRs have been widely adopted in TB screening due to their accessibility and ease of 
acquisition, ZN-stained smear microscopy remains the gold standard for bacteriological 
confirmation of TB, particularly in low-resource settings. However, manual examination 
of these smears by trained microbiologists is time-consuming, labor-intensive, and prone 
to interobserver variability, leading to potential inconsistencies in diagnosis.

The table provides an overview of key research works in this domain, detailing essential 
aspects such as the author(s), the type of sample used (i.e., ZN-stained sputum smear 
images), the ML techniques and architectures employed, including CNNs, U-Net, hybrid 
DL models, and other automated classification methods—and the reported performance 
metrics, such as accuracy, sensitivity, and specificity. One of the primary challenges 
associated with analyzing ZN-stained microscopy images stems from their inherent 
characteristics, including low contrast, background noise, staining inconsistencies, and 
the presence of artifacts, all of which can hinder the performance of traditional image-
processing approaches. Despite these challenges, the reviewed studies demonstrate that 
well-designed machine-learning pipelines can achieve promising diagnostic accuracy, 
typically within the range of 88 to 90%.

These findings suggest that automated TB detection from ZN-stained smears has 
significant potential for clinical applications, particularly as a supportive tool to aid 
pathologists and laboratory technicians in making diagnostic decisions. By leveraging DL 
models trained on large-scale annotated datasets, such systems can enhance diagnostic 
efficiency, reduce human error, and improve consistency across different laboratory 
settings. Furthermore, the integration of ML-based TB detection into routine clinical 
workflows could be particularly transformative in resource-limited regions where access 
to skilled personnel and advanced diagnostic tools remains a significant barrier to timely 
and accurate TB diagnosis. Table 3 presents a summary of relevant studies, highlighting 
their methodologies, datasets, and outcomes, thereby providing a comparative analysis 
of the current state in this field. This review underscores the growing importance of AI 
in infectious disease diagnostics and reinforces the notion that automated image-based 
TB detection could serve as a valuable adjunct to existing diagnostic methods, ultimately 
contributing to global TB control efforts.

In summary, our review indicates that among the various ML models applied to TB 
detection using ZN-stained images, CNN-based approaches have demonstrated the highest 
performance. Some studies even report an accuracy of up to 100%. This remarkable level 
of accuracy not only exceeds that of traditional ML methods and hybrid models but also 
highlights the robustness of CNN in automatically extracting and processing complex 
image features. Such outstanding performance provides a strong rationale for focusing 
our research on CNN-based models, as they offer a reliable and efficient solution for 
automated TB diagnosis. 
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Table 3 
Tuberculosis detection on Ziehl-Neelsen-stained slides using machine learning

Method / Technique Samples Accuracy (%) Novelty
CNN - VGG16, 
ResNet50, and 
SqueezeNet (Shwetha 
et al., 2021)

200 
images

97 The usage of SqueezeNet for bacilli detection, 
which achieves 97% accuracy with a lightweight 
model, is more efficient than VGG16 and ResNet50 
while maintaining excellent performance

Coarse (RGB) and 
fine (Sauvola) level 
segmentation (Samuel 
& Baskaran, 2021)

Not 
described

98.70 Integration of RGB thresholding and Sauvola's 
adaptive thresholding for TB bacilli segmentation, 
combined with shape descriptors for precise 
feature extraction, enables an automated and 
efficient TB detection system that reduces manual 
effort while improving sensitivity and specificity

Pat-Scan, scanner, and 
software (Sua et al., 
2021)

2,000 
images

99 Developing a digital pathology program for 
detecting and quantifying both typical and atypical 
mycobacteria in paraffin-embedded ZN-stained 
tissues

HSV color space 
transformation and 
image segmentation 
(Riza et al., 2022)

51 images 78.68 A freely available, diverse dataset supporting 
autofocusing, auto stitching, and bacilli 
segmentation, which enhances algorithm 
development and validation for automated TB 
detection

CNN (Zaizen et al., 
2022)

Not 
described

98 Detecting AFB in bronchoscopy samples 
demonstrates significantly higher sensitivity 
(86%) compared to conventional bacteriological 
tests (29%) for the TB diagnosis 

CNN - AlexNet, 
VGGNet-19, 
ResNet-18, DenseNet, 
GoogLeNet-incept-v3, 
In-ceptionResNet-v2, 
and the classic 
three-layer model 
(Shelomentseva & 
Chentsov, 2021)

Not 
described

99 A simple three-layer convolutional neural 
network outperforms advanced transfer learning 
models like DenseNet and InceptionResNet-v2 
for TB bacilli detection in ZN-stained images, 
highlighting the potential of lightweight CNNs for 
automated diagnosis

CNN - ResNet-18, 
ResNet-50, and VGG-
16 (Rachmad, 2024)

5,100 
images

93.42 Demonstrating that AlexNet outperforms 
ResNet-18, ResNet-50, and VGG-16 in both 
accuracy (93.42%) and processing speed (5 min 
52 s) for TB detection

CNN (Yang et al., 
2020)

21,504 
images

87.62 Developing an ML pipeline that combines two 
CNN models with an active learning framework 
and logistic regression, achieving high sensitivity 
(87.13%) and specificity (87.62%) for AFB 
detection

RegNetX4 (Zurac et al., 
2022)

510 
images

98.33 Developing a high-performance AI-based 
mycobacteria identification method using a large 
dataset of over 260,000 positive and 700 million 
negative patches from 510 ZN-stained whole slide 
images
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Despite significant advancements in ML for TB detection, several challenges remain. 
First, dataset biases, particularly in staining methods and image acquisition settings, can 
affect model performance across different institutions. Future research should focus on 
developing standardized datasets that encompass a diverse range of staining variations 
to improve model generalization. Second, the lack of large-scale, publicly available 
ZN-stained image datasets hampers progress in this field. Establishing collaborative 
research initiatives to share anonymized datasets could facilitate better benchmarking 
and validation of ML models. Federated learning, where models are trained across 
multiple hospitals without sharing raw data, could be a promising approach to overcome 
privacy concerns while improving model robustness. Lastly, real-time deployment of ML 
models in clinical settings requires lightweight architectures that balance accuracy with 
computational efficiency. Future research should explore model compression techniques 
such as knowledge distillation or quantization to make CNN-based models more suitable 
for deployment in resource-limited environments.

CONCLUSION

This comprehensive analysis researched 67 studies relating to machine learning-based TB 
identification with ZN-stained microscope images. The results show that CNNs are the most 
successful strategy, consistently outperforming classic ML models in feature extraction and 
classification. The capacity of CNNs to identify minute patterns in microscope pictures 
makes them an effective tool for automated tuberculosis diagnosis. Furthermore, this 
paper emphasizes the importance of hybrid models, which combine CNNs with classical 
classifiers such as SVMs or VGG16, demonstrating the potential for future performance 
gains. The study also highlights the importance of image preprocessing methods, such 

Table 3 (continue)

Method / Technique Samples Accuracy (%) Novelty
CNN and SVM 
(Rachmad et al., 2020)

1,000 
images

97.60, 97.90 ResNet-101 architecture combined with SVM for 
TB bacteria classification in ZN-stained images

CNN – VGG16 
(Author’s ongoing 
work) 

~1,000 
images

- Developing a hybrid DL model for tuberculosis 
detection using ZN-stained microscopy 
images, integrating CNN architectures (such as 
VGG16) while also exploring preprocessing and 
segmentation techniques to enhance detection 
performance

Note. CNN = Convolutional neural network; TB = Tuberculosis; ZN = Ziehl-Neelsen; RGB = Red Green Blue; 
AFB = Acid-fast bacilli; HSV = Hue Saturation Value; SVM = Support vector machine; DL = Deep learning; 
ML = Machine learning; Pat-Scan = Pathology scanner; Grad-CAM = Gradient-weighted class activation 
mapping; SHAP = SHapley Additive exPlanations: RESNET = Residual network; VGG = Visual Geometry 
Group; DenseNet = Densely connected convolutional network
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as contrast enhancement and segmentation, in improving model accuracy. Compared to 
prior reviews, this paper presents a more targeted investigation of ML algorithms applied 
to ZN-stained microscopy pictures, shedding light on the strengths and limits of various 
approaches.

Despite these developments, significant hurdles remain to establishing scalable and 
clinically effective AI models for tuberculosis diagnosis. Future research should focus on 
increasing dataset diversity to ensure models generalize across varied imaging conditions 
and patient populations. Hybrid and explainable AI technologies can help to improve 
model interpretability and clinician trust. Furthermore, real-world clinical validation and 
deployment methodologies must be investigated to integrate AI-based TB diagnosis into 
regular diagnostics. Addressing these problems will be crucial in enhancing the role of 
ML in TB screening, ultimately leading to more accurate and efficient disease diagnosis 
in global healthcare settings.
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